
MIC-Check: A Distributed Checkpointing Framework for the Intel Many Integrated Cores Architecture

Raghunath Rajachandrasekar, Sreeram Potluri, Akshay Venkatesh, Khaled Hamidouche and Dhabaleswar K. Panda

Abstract

Checkpointing in HPC

Disparity in Xeon Phi I/O Performance

Factors Limiting I/O Performance on MICs

Summary and Future Work

Proposed Architecture and Design

Performance Evaluation

0

1000

2000

3000

4000

1 2 4 8

A
gg

re
ga

te
 t

h
ro

u
gh

p
u

t
(M

B
/s

)

procs writing data to Lustre

Host

Xeon-Phi

• IOZone benchmark run on the 1 node of Stampede@TACC

• Aggregate throughput as seen by host peaks at 3.4GB/s

• Peak throughput as seen by Xeon Phi coprocessor: 893MB/s

• Contention hurts throughput with just 8 MIC processes (41MB/s)

Peak bandwidth of various communication channels on Xeon Phi

• Low-frequency processing units with reduced cache sizes

• VFS page-cache management overheads when per-CPU pool is depleted

• Kernel page allocator invoked to request free page

• Zone and LRU locking

• Identifying pages that can be used to replenish per-CPU pool

• User-space kernel-space data movement (copy_from/to_user routines)

• Do not leverage vector-processing capabilities

• Page locking to maintain consistency

• 4-way multithreaded processing cores => round-robin arbitration (CPI=4)

• Not capable of branch-prediction, speculative or out-of-order execution

Naïve checkpointing protocols, which are predominantly I/O-intensive, face

severe performance bottlenecks on the Xeon Phi architecture due to several

inherent limitations. This work explores these limitations, and proposes the

architecture and design of a novel distributed checkpointing framework,

namely MIC-Check, for HPC applications running on it.

Sandy Bridge Ivy Bridge

Same

Socket

Read from MIC 962 MB/s

(15%)

3421 MB/s

(54%)

Write to MIC 5280 MB/s

(83%)

6396 MB/s

(100%)

Different

Socket

Read from MIC 370 MB/s

(6%)

247 MB/s

(4%)

Write to MIC 1075 MB/s

(17%)

1179 MB/s

(19%)

Peak IB FDR Bandwidth: 6397 MB/s

CPU

Xeon Phi

PCIe

QPI

Host MIC

Node

1

2

3

4 5 6

intra-host

2 intra-MIC

3 intra-node host-MIC

4 host-host

5 MIC-MIC

6 inter-node host-MIC

1

0

200

400

600

800

1 2 4 8 16

A
g

g
re

g
a

te
 t

h
ro

u
g

h
p

u
t

(M
B

/
s
)

Number of MIC procs writing data to Lustre

Baseline MIC-I/O MIC-Check I/O

Intra-node Scalability tests on 1 node of

the Stampede supercomputer (@TACC)

1

10

100

1000

10000

100000

16 32 64 128 256 512 1K 2K 4K

A
g

g
re

g
a

te
 t

h
ro

u
g

h
p

u
t

(M
B

/
s
)

Total #MIC procs writing data to Lustre

Baseline MIC-I/O MIC-Check I/O

Inter-node Scalability tests* on

the Stampede supercomputer (@TACC)

*TACC staff requested us to limit our baseline runs to 128 processes, owing to failures caused by Lustre contention

Application-level evaluation with ENZO checkpoints

Compute

Time (s)

Checkpoint

Time (s)

Baseline 91.2 44.8

MIC-Check 93.1 1.49

• Outlined and analyzed the inherent I/O limitations on MICs

• Proposed a novel checkpointing system that overcomes these limitations

• MIC-Check provides 35x improvement in aggregate I/O throughput with

16 processes running on a single MIC; 54x improvement with 4,096

process running on 256 MICs

• Adapter-based coprocessors are expected to be the mainstay – we will

study the impact of MIC-Check on future architectures

• Extend MIC-Check to transparently checkpoint “offloaded” applications

This research is supported in part by NSF grants OCI-1148371 and CCF-1213084.

MCI = MIC-Check Interception Library

MCP = MIC-Check Proxy

MCI

MVAPICH

Application Processes

Host Xeon Phi

Parallel File System

Buffer Pools + I/O Threads

MCP

1

2

3

4

Transparent System-Level Checkpointing with MVAPICH and BLCR

1

2

3

4

MCI takes control of application I/O; initiates SCIF

connection with MCP on host during MPI_Init()

During a checkpoint, MCI intercepts open() to

register SCIF resources at host; intercepts write() to

send control to host indicating checkpoint is ready

MCP spawns new thread to progress I/O on behalf of

each MPI process connecting to it; pulls checkpoint

data from MIC using SCIF RMA protocol

Checkpoint written to underlying parallel file system in

a pipelined manner, as and when data is available

from the SCIF RMA transfers

1. Drain in-flight messages and suspend network activity

2. Tear down communication channels (1)---(6)

3. Obtain snapshot of host and MIC MPI processes using BLCR

4. Re-establish communication channels (1)---(6)

Application-level checkpointing for Native and Symmetric mode of execution

• Native mode of execution

•128 MPI processes running on the TACC system

• 5.37GB of aggregate checkpoints

• 30x reduction in checkpointing time observed

