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Abstract

Naive checkpointing protocols, which are predominantly | /O-intensive, face
severe performance bottlenecks on the Xeon Phi architecture due to several
iInherent limitations. This work explores these limitations, and proposes the
architecture and design of a novel distributed checkpointing framewaork,
namely MIC-Check, for HPC applications running on It.

Checkpointing in HPG
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* |0Zone benchmark run on the 1 node of Stampede@TACC
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* Aggregate throughput as seen by host peaks at 3.4GB/'s

* Peak throughput as seen by Xeon Phi coprocessor: 893MB/'s

* Contention hurts throughput with just 8 MIC processes ([41MB/ s]

Factors Limiting | /0 Performance on MICs

* Low-frequency processing units with reduced cache sizes

* VFS page-cache management overheads when per-CPU pool is depleted
* Kernel page allocator invoked to request free page
* Zone and LRU locking
* [dentifying pages that can be used to replenish per-CPU pool

* User-space < kernel-space data movement (copy_from//to_user routines]

* Do not leverage vector-processing capabllities

* Page locking to maintain consistency
* 4-way multithreaded processing cores => round-robin arbitration [CPI=4)

* Not capable of branch-prediction, speculative or out-of-order execution

Peak bandwidth of various communication channels on Xeon Phi
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Application-level checkpointing for Native and Symmetric mode of execution
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MCI

MCP = MIC-Check Proxy

= MIC-Check Interception Library

(1) MCI takes control of application |/0; initiates SCIF
connection with MCP on host during MP/[_Initf]

€)

During a checkpoint, MCI intercepts gperif] to

register SCIF resources at host; intercepts writef]to
send control to host indicating checkpoint is ready

MCP spawns new thread to progress |/0 on behalf of

each MPI process connecting to It; pulls checkpoint
data from MIC using SCIF RMA protocol

Checkpoint written to underlying parallel file system in

a pipelined manner, as and when data is available

from the SCIF RMA transfers

Transparent System-Level Checkpointing with MVVAPICH and BLCR
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1. Drain in-flight messages and suspend network activity

2. Tear down communication channels
3. Obtain snapshot of host and MIC MP

(1)-(6]

4. Re-establish communication channels (1]—(6]

processes using BLCR

__________________________________________________________

- (Dintra-host
- (@)intra-MIC
- (8)intra-node host-MIC
(4)host-host
- (5MIC-MIC
(6) inter-node host-MIC

Performance Evaluation

Intra-node Scalability tests on 1 node of
the Stampede supercomputer (@TACC]
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Inter-node Scalability tests™* on
the Stampede supercomputer (@TACC]
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*TACC staff requested us to limit our baseline runs to 128 processes, owing to failures caused by Lustre contention

Application-level evaluation with ENZO checkpoints

* Nlative mode of execution

Compute | Checkpoint
Time (s] Time (s]

*128 MPI processes running on the TACC system

Baseline 91.2 44 .3

* 5.3/(GB of aggregate checkpoints

* 30x reduction in checkpointing time observed

MIC-Check 1.49

oummary and Future Work

* Qutlined and analyzed the inherent | /0 limitations on MICs

* Proposed a novel checkpointing system that overcomes these limitations
* MIC-Check provides 39x improvement in aggregate |/0 throughput with
16 processes running on a single MIC; 54x improvement with 4,096
process running on 256 MICs

* Adapter-based coprocessors are expected to be the mainstay - we will
study the impact of MIC-Check on future architectures

* Extend MIC-Check to transparently checkpoint “offloaded” applications
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