e Dmio State TNIVERSITY | MIIC-Check: A Distributed Checkpointing Framework for the Intel Many Integrated Cores Architecture

=~ MVAPICH

I . MPI, PGAS and Hybrid MPI+PGAS Library

Raghunath Rajachandrasekar, Sreeram Potluri, Akshay Venkatesh, Khaled Hamidouche and Dhabaleswar K. Panda

Abstract

Naive checkpointing protocols, which are predominantly | /O-intensive, face
severe performance bottlenecks on the Xeon Phi architecture due to several
iInherent limitations. This work explores these limitations, and proposes the
architecture and design of a novel distributed checkpointing framewaork,
namely MIC-Check, for HPC applications running on It.

Checkpointing in HPG

Global
CheckpoinI :

u(0,t

fd
=
Qo
i -
o0
-
0o —
£2
0N
2
(¢°)
oY)
Q
b -
o0
oTo)
<

]
S =
> <
]
> <
= -
[]
= =
> <

H

Y

\

\

v

v

v

)
Y

A
\

)
v

)
v

)
v

0
\

IA!(}!AIAIAIAI I

I IVIVIVIVIVIVI I
B 4

)=

u(z,0) = f(x)

g

(initial temp. distribution)

1) =0

Post-ckpt

coordination

Running

A

Post-failure
restart 4-@
v

v
Initial
synchronization

Write
snapshot

Pre-ckpt
coordination

Host

4000
3000
2000
1000
o |
1

2

B Xeon-Phi

A

procs writing data to Lustre

* |0Zone benchmark run on the 1 node of Stampede@TACC

3

* Aggregate throughput as seen by host peaks at 3.4GB/'s

* Peak throughput as seen by Xeon Phi coprocessor: 893MB/'s

* Contention hurts throughput with just 8 MIC processes ([41MB/ s]

Factors Limiting | /0 Performance on MICs

* Low-frequency processing units with reduced cache sizes

* VFS page-cache management overheads when per-CPU pool is depleted
* Kernel page allocator invoked to request free page
* Zone and LRU locking
* [dentifying pages that can be used to replenish per-CPU pool

* User-space < kernel-space data movement (copy_from//to_user routines]

* Do not leverage vector-processing capabllities

* Page locking to maintain consistency
* 4-way multithreaded processing cores => round-robin arbitration [CPI=4)

* Not capable of branch-prediction, speculative or out-of-order execution

Peak bandwidth of various communication channels on Xeon Phi

| SandyBridge | Iy Bridge

QP

]
N S N B S S S

= e

Different Read from MIC 370 MB/s

Same
Socket

Read from MIC 962 MB/'s

Whrite to MIC

Socket
g Whrite to MIC

Peak IB F

(15%)

5280 MB/s

(83%)

[E%)

1075 MB/s

(17%])

3421 MB/s
(54%)
5396 MB/s
(100%)
247 MB/s
(47%)
1179 MB/s
(19%)

R Bandwidth: 6397 MB/s

Application-level checkpointing for Native and Symmetric mode of execution

Host

Xeon Phi

Buffer Pools + | /0 Threads@

Application Processes

v

Zm

\4

@

MCI

MVAPICH

2 .
: ; 7
i~
0 as-t-
MCP
) 4 @ \ 4

-

' Parallel File System!

=)

MCI

MCP = MIC-Check Proxy

= MIC-Check Interception Library

(1) MCI takes control of application |/0; initiates SCIF
connection with MCP on host during MP/[_Initf]

€)

During a checkpoint, MCI intercepts gperif] to

register SCIF resources at host; intercepts writef]to
send control to host indicating checkpoint is ready

MCP spawns new thread to progress |/0 on behalf of

each MPI process connecting to It; pulls checkpoint
data from MIC using SCIF RMA protocol

Checkpoint written to underlying parallel file system in

a pipelined manner, as and when data is available

from the SCIF RMA transfers

Transparent System-Level Checkpointing with MVVAPICH and BLCR

P1 \
\
I
/
”’

P2 7
I
\
\

P3

1. Drain in-flight messages and suspend network activity

2. Tear down communication channels
3. Obtain snapshot of host and MIC MP

(1)-(6]

4. Re-establish communication channels (1]—(6]

processes using BLCR

__

- (Dintra-host
- (@)intra-MIC
- (8)intra-node host-MIC
(4)host-host
- (5MIC-MIC
(6) inter-node host-MIC

Performance Evaluation

Intra-node Scalability tests on 1 node of
the Stampede supercomputer (@TACC]

0 Baseline MIC- /0

Number of MIC procs writing data to Lustre

m MIC-Check | /0

Q0
-
O

-
-

B~ 0
-
O

N
-
O

Aggregate throughput
(MB/ s}

-
|

Inter-node Scalability tests™* on
the Stampede supercomputer (@TACC]

] - Baseline MIC-l/O0 = MIC-Check |/0
'§> 100000
O —
=< 10000
5o
22 1000
O)
(€
= 100
<

10

/l I I I I I I I I
16 32 B4 128 256 512 1K 2K 4K

Total #MIC procs writing data to Lustre

*TACC staff requested us to limit our baseline runs to 128 processes, owing to failures caused by Lustre contention

Application-level evaluation with ENZO checkpoints

* Nlative mode of execution

Compute | Checkpoint
Time (s] Time (s]

*128 MPI processes running on the TACC system

Baseline 91.2 44 .3

* 5.3/(GB of aggregate checkpoints

* 30x reduction in checkpointing time observed

MIC-Check 1.49

oummary and Future Work

* Qutlined and analyzed the inherent | /0 limitations on MICs

* Proposed a novel checkpointing system that overcomes these limitations
* MIC-Check provides 39x improvement in aggregate |/0 throughput with
16 processes running on a single MIC; 54x improvement with 4,096
process running on 256 MICs

* Adapter-based coprocessors are expected to be the mainstay - we will
study the impact of MIC-Check on future architectures

* Extend MIC-Check to transparently checkpoint “offloaded” applications

93.1

This research Is supported in part by NSF grants OCI-1148371 and CCF-1213084.

